Iodophosphoryloxylation of Carbon-Carbon Multibonds and Its **Application to Glycals**

Takahito Muraki,[†] Masataka Yokoyama,^{†,‡} and Hideo Togo^{*,†,‡}

Graduate School of Science and Technology, and Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 Japan

Received March 2, 2000

Iodophosphoryloxylation of carbon-carbon multibonds was attempted. Alkynes and cyclohexene were converted to the corresponding 1,2-iodophosphoryloxylated compounds in moderate to good yields with a trivalent iodine compound/iodine system, while glucal gave mainly the corresponding iodohydrin compound in this system. However, 2-deoxy-2-iodoglycosyl diphenylphosphinates were obtained from the corresponding glycals with a diphenylphosphinic acid/iodine/potassium carbonate system in good yields. Moreover, triethylborane smoothly reduced 2-deoxy-2-iodoglycosyl diphenylphosphinates to 2-deoxyglycosyl diphenylphosphinates in a 1,4-cyclohexadiene solvent.

Introduction

Introduction of a halogen and a nucleophile to carboncarbon multiple bonds at the same time is called a cohalogenation reaction, and extensive study has been carried out.¹ In the intramolecular cohalogenation reactions, especially, iodine-induced intramolecular cyclizaton reactions are very valuable for the construction of cyclic compounds.² In the intermolecular cohalogenation reaction, alkoxide, carboxylate, amide, and azide anions are often used as nucleophiles to introduce hydroxyl and amino groups;1c however, the study on use of phosphoric acids as nucleophiles in cohalogenation reactions is limited.³ The introduction of a phosphate group in sugar compounds is very important in view of biological activity, enzymatic inhibitors, and O- and C-glycosidation.^{3b,4} In fact, phosphorylated sugars are key intermediates in the metabolism of monosaccharides as well as in biosynthesis of complex oligosaccharides. Both the phosphonate and *C*-glycoside partial structures are effective mimics for the corresponding moieties in naturally occurring sugar phosphates. Thus, we planned to carry out the iodophosphoryloxylation of carbon-carbon multibonds.

Results and Discussion

1. Iodophosphoryloxylation of Alkynes and Alkene. Recently, the study and synthetic use of organohy-

pervalent iodine compounds have been widely carried out,⁵ especially, organotrivalent iodine compounds having sulfonyloxy groups, which are often used as oxidants because of their powerful oxidation ability.^{5,6} We have already reported the iodotosyloxylation of alkynes with 1-(arenesulfonyloxy)benziodoxolones,⁷ and we confirmed that a trivalent iodine compound/iodine system was one of the best methods for the cohalogenation reaction of alkynes. Therefore, we planned to perform iodophosphorvloxylation of alkynes with a trivalent iodine compounds/ iodine system and to explore their synthetic application. To date, study on the synthetic use of organotrivalent iodine compounds having phosphoryloxy groups has been quite limited.⁸ Thus, {[bis(phenoxy)phosphoryloxy](hydroxy)iodo}benzene (1) and [(diphenylphosphoryloxy)-(hydroxy)iodo]benzene (2) were prepared, and the iodophosphoryloxylation of alkynes and alkene was studied. The results with alkynes are shown in Table 1.

Totally, iodane 1 gave the iodophosphoryloxylated alkenes in better yields than the use of iodane 2, and the yields of alkenes 4 and 5 depend on the electron density of the carbon-carbon triple bond. Thus, diphenylacetylene (3a) was iodophosphoryloxylated with iodane 1 to give the alkene 4a in moderate yield under conditions A, while iodane **2** gave the iodophosphoryloxylated alkene 5a in poor yield (entries 1 and 2). When the amount of alkyne 3a was increased from 1.2 equiv to 5.0 equiv (conditions B), the yield of compound 5a was increased up to 26% (entry 3). 4-Octyne (3b) was converted to the

[†] Graduate School of Science and Technology.

[‡] Department of Chemistry, Faculty of Science. (1) Reviews: (a) Dowle, M. D.; Davies, D. I. *Chem. Soc. Rev.* **1979**,

⁽b) Homsi, F.; Rousseau, G. J. Org. Chem. 1998, 63, 5255. (c) Lee, W. S.; Jang, K. C.; Kim, J. H.; Park, K. H. Chem. Commun. 1999, 251.

^{(3) (}a) Review: Zeffroy, N. S.; Koz'min, A. S. Acc. Chem. Res. 1985, 18, 154. (b) Vincent, S. P.; Burkart, M. D.; Tsai, C.-Y.; Wong, C.-H. J.

^{(4) (}a) Engel, R. Chem. Rev. **1977**, 77, 349. (b) Engel, R. In Handbook of Organophosphorus Chemistry; Engel, R., Ed.; Dekker: New York, 1992; p 559. (c) Niggemann, J.; Lindhorst, T. K.; Walfort, M.; 1992; p 559. (c) Niggemann, J.; Lindhorst, T. K.; Walfort, M.;
Laupichler, L.; Sajus, H.; Thiem, J. *Carbohydr. Res.* 1993, *246*, 173.
(d) Levy, D. E.; Tang, C. *The Chemistry of C-Glycosides*, Pergamon Press: Oxford, 1995. (e) Bertozzi, C.; Bednarski, M. In *Modern Methods in Carbohydrate Synthesis*; Khan, S. H., O'Neill, R. A., Eds.; Harwood Academic: Amsterdam, 1996; p 316. (f) Naundorf, A.; Natsch, S.; Klaffke, W. *Tetrahedron Lett.* 2000, *41*, 189.

⁽⁵⁾ Recent reviews: (a) Ochiai, M. Rev. Heteroat. Chem. 1989, 2, 92. (b) Stang. P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123. (c) Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627. (d) Varvoglis, A. *Tetrahedron*, **1997**, *53*, 1179. (e) Zhdankin, V. V. Rev. Heteroatom Chem. **1997**, *17*, 133. (f) Muraki, T.; Togo, H.; Yokoyama, M. Rev. Heteroatom Chem. 1997, 17, 213. (g) Kitamura, T.; Fujiwara, Y. Org. Prep. Proc. Int. 1997, 29, 409. (h) Kirschning, A. Eur. J. Org. Chem. 1998, 2267, 7. (i) Wirth, T.; Hirt, U. S. Synthesis 1999, 1271. (j) Moriarty, R. M.; Prakash, O. Org. React. 1999, 54, 273.
 (6) Review; Moriarty, R. M.; Vaid, R. K.; Koser, G. F. Synlett 1990,

^{365.}

⁽⁷⁾ Muraki, T.; Togo, H.; Yokoyama, M. J. Org. Chem. 1999, 64, 2883.

^{(8) (}a) Koser, G. F.; Lodaya, J. S.; Ray, D. G., III.; Kokil, P. B. *J. Am. Chem. Soc.* **1988**, *110*, 2987. (b) Stang, P. J.; Kitamura, T.; Boehshar, M.; Wingert, H. *J. Am. Chem. Soc.* **1989**, *111*, 2225. (c) Koser, G. F.; Chen, X.; Chen, K.; Sun, G. *Tetrahedron Lett.* **1993**, *34*, 779. (d) Moss, R. A.; Zhang, H. *J. Am. Chem. Soc.* **1994**, *116*, 4471. (e) Moriarty, R. M.; Condeiu, C.; Tao, A.; Prakash, O. *Tetrahedron Lett.* **1997**, *38*, 2401.

Table 1. Iodophosphoryloxylation of Alkynes 3

	Allama		Dunduur	
2: Ar = Ph			5: Ar =	Ph
1: Ar = PhÓ			4 : Ar =	PhO
∖/ ¦ − OH	CICH ₂ CH ₂ CI, r.t.,	dark, 16 h	Ar ₂ PO ₂	R'
O ₂ PAr ₂	II II 3	.2 eq.)	R	_/I
	B B, 3			

Entry Jodano	Aikyric			Conditiona ^{a)}	FIOUUCE		
Entry Iouane		R	R'	3	3 Conditions		Yield / %
1	1	Ph	Ph	3a	А	4a	58
2	2	Ph	Ph	3a	Α	5a	14
3	2	Ph	Ph	3a	в	5a	26
4	1	<i>n</i> -Pr	<i>n</i> -Pr	3b	А	4b	84
5	2	<i>n</i> -Pr	<i>n</i> -Pr	3b	А	5b	86
6	1	Ph	Ме	3c	Α	4c	85
7	2	Ph	Ме	3c	А	5c	67
8	1	Ph	н	3d	В	4d	27
9	1	Ph	н	3d	С	4d	33
10	1	<i>п</i> -Ви	н	3e	А	4e	30
11	1	<i>n</i> -Bu	н	3e	С	4e	79
12	2	<i>п</i> -Ви	н	3e	в	5e	29

a) A: alkyne 3 (1.2 eq.), solv. 2.5 mL; B: alkyne 3 (5.0 eq.), solv. 2.5 mL;
 C: alkyne 3 (5.0 eq.), solv. 5.0 mL.

corresponding adducts **4b** and **5b** with iodanes **1** and **2**, effectively (entries 4 and 5). Terminal alkynes 3d and **3e** gave the corresponding adducts in poor yields. Iodophosphoryloxylation of ethyl propiolate with iodanes 1 and 2 did not proceed, because of the low electron density of the carbon-carbon triple bond. Here, iodophosphoryloxylation of alkyne **3b** with a phosphonic acid/iodine system did not proceed at all. Cyclohexene (6) was converted to the corresponding adduct 7 in 82% yield with an iodane 2/iodine system (eq 1) while a phosphinic acid/iodine/potassium carbonate system gave the adduct 7 in only 26% yield under the best conditions. Thus, the reactive intermediate of these cohalogenation reactions was a phosphonyl hypoiodite species, which is formed by the reaction of iodane 2 and iodine. The formed phosphonyl hypoiodite species adds to alkynes or cyclohexene via ionic pathway.

2. Iodophosphoryloxylation of Glycals. Introduction of iodine and a nucleofugal anion, such as acetate and phosphate, to glycals is very important, because these glycosyl esters are excellent glycosyl donors and, moreover, precursors of 2-deoxysugars.⁹ Thus today, many iodoacetoxylation methods for carbon–carbon double bonds including glycals have been developed.¹⁰ However, iodophosphoryloxylation methods are quite limited, because their preparation is difficult.^{4c} Therefore, we planned to develop a convenient iodophosphoryloxylation

 Table 2.
 Iodophosphoryloxylation of Glucal 8a with

 Trivalent Iodine Compound/Iodine System

a) A: 4.0 eq., CICH₂CH₂CI (2.5 mL), 5 d; B: 2.0 eq., CHCl₃ (5 mL), 5 d, Ph₂PO₂H (2.0 eq.); C: 2.0 eq., CICH₂CH₂CI (2.5 mL), 3 d; D: 4.0 eq., CICH₂CH₂CI (2.5 mL), 6 d; E: 4.0 eq., CHCl₃ (10 mL), 6 d, Ph₂PO₂H (4.0 eq.).

method with glycals based on the above results. At first, a trivalent iodine compound/iodine system to obtain 2-deoxy-2-iodoglycosyl phosphinate was employed, and the results are shown in Table 2.

However, iodohydrin compound **10A** was obtained in 72% yield, instead of the corresponding glycosyl ester 9A (entry 1).¹¹ Probably, here the iodophosphoryloxylation of glucal occurred, and the subsequent hydrolysis by the hydroxy group derived from iodane 2 at the reactive anomeric position in the sugar compound occurred to give iodohydrin 10 because of the phosphinate anion as a good leaving group. Then, diphenylphosphinic acid was added to the reaction mixture (entry 2), and the corresponding adduct **9A** was obtained in 24% yield (**9A**- α and **9A**- β). However, the iodohydrin compound 10A was still the main product. In entries 3-5, phosphonium iodide was used as the iodine source. This cohalogenation system was reported by Kirschning et al. and the reactive intermediate was a halogen-ate(I) complex.¹² As a result, in a trivalent iodine compound/phosphonium iodide system, prolonged reaction time was required and the yield of 9A could not be improved. Then, iodophosphoryloxylation of glycals with a phosphinic acid/iodine system was carried out (Table 3).

In entries 1-3, the corresponding iodophosphoryloxylated adducts **9A** were obtained in moderate yields together with glucal **8A** in 10-40% yields. Under the best conditions, the corresponding adduct **9A** was obtained in

^{(9) (}a) Sebesta, D. P.; Roush, W. R. J. Org. Chem. 1992, 57, 4799.
(b) Roush, W. R.; Briner, K.; Sebesta, D. P. Synlett 1993, 264. (c) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 1999, 121, 3541. (d) Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett. 1999, 1, 211. (e) Tanaka, H.; Sakamoto, H.; Sano, A.; Nakamura, S.; Nakajima, M.; Hashimoto, S. Chem. Commun. 1999, 1259. (f) Roush, W. R.; Narayan, S. Org. Lett. 1999, 1, 899.

^{(10) (}a) Woodward, R. B.; Brutcher, F. V., Jr. J. Am. Chem. Soc.
1958, 80, 209. (b) Mangoni, L.; Adinolfi, M.; Barone, G.; Parrilli, M.; Tetrahedron Lett. 1973, 4485. (c) Adinolfi, M.; Parrilli, M.; Barone, G.; Laonigro, G.; Mangoni, L. Tetrahedron Lett. 1976, 3661. (d) Cambie, R. C.; Gash, D. M.; Rutledge, P. S.; Woodgate, P. D. J. Chem. Soc., Perkin Trans. 1 1977, 1157. (e) Doleschall, G.; Tóth, G. Tetrahedron 1980, 36, 1649. (f) Szántay, C.; Blaskó, G.; Bárczai-Beke, M.; Péchy, P.; Dörnei, G. Tetrahedron Lett. 1980, 21, 3509. (g) Barluenga, J.; Rodriguez, M. A.; Campos, P. J.; Asenio, G. Chem. Commun. 1987, 1491. (h) Roush, W. R.; Narayan, S.; Bennett, C. E.; Briner, K. Org. Lett. 1999, 1, 895.

⁽¹¹⁾ Preparation of iodohydrin from glycal: (a) Miljkovic, D.; Djurendic, E.; Vukojevic, N.; Gasi, K.; Scanadi, J. *Carbohydr. Res.* **1993**, *233*, 251. (b) Djurendic, E.; Vukojevic, N.; Dramicanin, T.; Canadi, J.; Miljkovic, D. *J. Serb. Chem. Soc.* **1998**, *63*, 685.

^{(12) (}a) Kirschning, A.; Plumeier, C.; Rose, L. *Chem. Commun.* 1998, 33. (b) Hashem, Md. A.; Jung, A.; Ries, M.; Kirschning, A. *Synlett* 1998, 195. (c) Kirschning, A.; Hashem, Md. A.; Monenschein, H.; Rose, L.; Schöning, K.-U. *J. Org. Chem.* 1999, 64, 6522. (d) Kirschning, A.; Jesberger, M.; Monenschein, H. *Tetrahedron Lett.* 1999, 40, 8999.

 Table 3. Iodophosphoryloxylation of Glycal 8 with

 Diphenylphosphinic Acid/Iodine System

$(AcO)_{n} \xrightarrow{O} \underbrace{Ph_2PO_2H / I_2 / K_2CO_3}_{CICH_2CH_2CI, r.t.} (AcO)_{n} \xrightarrow{O}$						O_{1} , $O_{2}PPh_{2}$ + $O_{2}PPh_{2}$ + $O_{2}PPh_{2}$			
	8				9-α			9- β	
Entry Otymetal		Conditions				Products ^{b)} Yields		ls / %	
Linuy	CilyCal -	Ph2PO2H / eq.	l ₂ / eq.	K ₂ CO ₃ / eq.	Time / d	9-α	9-β	9-α	9-β
1	8A	1.1	1.1	1.1	3	9A-α	9Α-β	34	5
2	8A	2.0	1.1	2.0	3	9Α- α	9Α-β	36	6
3	8A	4.0	2.0	4.0	3	9Α- α	9Α-β	57	9
4	8A	8.0	4.0	8.0	3	9Α-α	9Α-β	74	9
5	8A	8.0	4.0	8.0	1	9A-α	9Α-β	71	22
6	8 B	8.0	4.0	8.0	1	9 Β -α	9 Β- β	82	4
7	8C	8.0	4.0	8.0	1	9C-α	9C-β	4	19
8	8C	8.0	4.0	8.0	1	9C-α	9 C -β	10	59 ^{c)}
AcO a) A) c						
	8B	8C							
AcO b) A	со ОАс 9 В -а	O ₂ PPh ₂ AcO	Ο ΟΑc 9 B -β	l₂PPh₂ CH _{3//.} AcO	0,02P 	Ph ₂ CH ₃ , AcO ¹		0 ₂ PPh ₂	
c) Na ₂ S	O₄ was add	ed							

Table 4. ¹H NMR Spectra of Compounds 9

			-		-	
Adduct	9Α- α	9Α- β	9 Β -α	9Β- β	9C-α	9C- β
δ/ppm ^{a)}	6.12	5.63	6.24	5.63	5.57	6.08
Pattern	dd	dd	d	dd	dd	d
J / Hz	7.3, 1.4	9.2, 8.3	7.0	9.3, 8.7	8.9, 8.0	7.4
NOE ^{b)}	х	O (14 %)	?	O (9 %)	O (15 %)	Х

a) anomeric proton

b) 1-H↔5-H; X: not observed; O: observed; ?: not identified

93% yield in the presence of K_2CO_3 (8 equiv) finally (entry 5). Galactal (**8B**) and 6-deoxy-L-glucal (**8C**) were converted to the corresponding glycosyl phosphinates under the same conditions. Galactal (**8B**) was iodophosphoryloxylated in good yield (entry 6), and compound **9C** was obtained in 69% yield in the presence of sodium sulfate to keep dry conditions (entry 8). In the absence of sodium sulfate, glycosyl ester **9C** was formed in only 23% yield (entry 7), and an iodohydrin compound was observed by ¹H NMR. The NIS (*N*-iodosuccinimide)/diphenylphosphinic acid system gave the corresponding ester **9A** in moderate yield (**9A**- α : 37%, **9A**- β : 12%). The stereochemistry of adducts **9** was established based on Niggemann's report^{4c,13} and ¹H NMR experiment (Table 4).

Conversion of glycosyl ester **9A**- α to 2-deoxymannosyl diphenylphosphinate (**11A**- α) was attempted. Hydride reagents such as lithium aluminiun hydride were often used to reduce the iodide.¹⁴ However, hydride reduction was not favorable to obtain compound **11A**- α , because the compound **9A**- α has two good leaving groups; one is an iodine atom and the other is a phosphinate group. Thus, we used a radical reduction method to obtain 2-deoxymannosyl diphenylphosphinate (**11A**- α). At first, treatment of compound **9A**- α with diphenylsilane/triethylborane system was attempted.¹⁵ Diphenylsilane and glycosyl ester **9A**- α were stirred in THF solution, and white precipitates were formed. The compound **9A**- α

Table 5. Reduction of Compound 9A- α to Compound 11A- α

AcO AcO		2 ^{PPh} 2 I aero	Et ₃ B / THP bic conditions	AcO AcC		∖O ₂ PPh ₂
	9Α-α				11 Α- α	
Entry			Yields / %			
Entry	Et ₃ B / eq.	Solvent	Temp. / °C	Time / h	11 Α- α	8A
1	12	THF	r.t.	2	44	54
2	12	THF	0	2	53	45
3	12	THF	0	2	51 ^{a)}	43
4	12	THF	-30~-20	2	51	41
5	12	$\langle \rangle$	0	2	73 ^{b)}	0
6	12 x 2	$\langle \rangle$	0	4	88	0

a) K_2CO_3 (4.0 eq.) was added.

b) Starting material 9A-α was recovered in 21 % yield.

reacted with diphenylsilane alone before the addition of triethylborane to form diphenylphosphinic acid and a complex mixture. Then, radical reduction was carried out by triethylborane alone (Table 5).

In entry 1, the corresponding reduced compound $11A-\alpha$ was obtained in 44% yield together with glucal 8A in 54% yield. We speculated two plausible formation mechanisms of glucal: one is Lewis acid and/or proton acid, derived from triethylborane under aerobic conditions, induced elimination of diphenylphosphinic acid from the compound **11A**- α ; the other is radical β -elimination of the diphenylphosphoryloxy group from the sugar radical. In entries 2-4, lowering reaction temperature and addition of potassium carbonate did not make any remarkable difference. We thought the formation of glucal 8A came from the radical β -elimination of 1-(diphenylphosphinyl)-2-deoxy-2-glycosyl radical. Thus, in entries 5 and 6, the solvent was changed from THF to 1,4-cyclohexadiene which is an effective hydrogen donor. Finally, 2-deoxymannosyl diphenylphosphinate ($11A-\alpha$) was obtained in 88% yield, and glucal 8A did not form at all (entry 6).

Conclusion

Alkynes and cyclohexene were iodophosphoryloxylated with a trivalent iodine compound/iodine system to give the corresponding 1,2-iodophosphoryloxylated compounds in moderate to good yields, while glucal was converted to the corresponding iodohydrin compound under the same conditions. However, 2-deoxy-2-iodoglycosyl diphenylphosphinates were obtained in good yields with a diphenylphosphinic acid/iodine/potassium carbonate system. Triethylborane smoothly reduced 2-deoxy-2-iodoglycosyl diphenylphosphinate to 2-deoxyglycosyl diphenylphosphinate in 1,4-cyclohexadiene solvent.

Experimental Section

General. All iodophosphoryloxylated reactions were performed under an argon atmosphere. ¹H NMR spectra were recorded on 400 and 500 MHz spectrometers, and ¹³C NMR

⁽¹³⁾ Niggemann et al. reported that the preparation of (2-iodo-2-deoxy- α -mannopyranosyl)(dibenzyl) phosphate and (2-iodo-2-deoxy- β -glucopyranosyl)(dibenzyl) phosphate, and their chemical shift of anomeric proton [5.92 (dd, J = 5.7, 1.3 Hz, α -manno form) and 5.51 (dd, J = 9.1, 7.4 Hz, β -gluco form)]. (14) Larock, R. C. In *Comprehensive Organic Transformation*; VCH

⁽¹⁴⁾ Larock, R. C. In *Comprehensive Organic Transformation*; VCF Publisher: New York, 1989; p 18.

^{(15) (}a) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. *Synlett* **1991**, 435. (b) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. Cs. *Tetrahedron Lett.* **1991**, *32*, 2569.

spectra were recorded on 100 and 125 MHz spectrometers. Chemical shifts are reported as ppm downfield from tetramethylsilane (TMS) in δ units. *J*-Values are given in hertz. In the ¹³C NMR spectra, p, s, t, and q means primary, secondary, tertiary, and quaternary. The matrix of mass spectra (FAB) used 3-nitrobenzyl alcohol. Melting points were determined on an electrothermal apparatus in open capillary tubes and are uncorrected. Kieselgel 60 F254 (Merck) was used for TLC, and Wakogel B-5F was used for pTLC.

Materials. Iodanes 1^{8a} and 2^{8e} were prepared by the literature method. Alkynes **3**, aromatics **6**, glycals **8**, and triethylborane (1 M solution in THP) were commercially available.

Iodophosphoryloxylation Reaction of Alkynes. Iodane 1 (235.0 mg, 0.5 mmol) and iodine (152.4 mg, 0.6 mmol) were added to a solution of alkyne **3b** (275.0 mg, 2.5 mmol) in ClCH₂-CH₂Cl (2.5 mL) and stirred for 16 h under dark conditions at rt. Then the reaction mixture was poured into saturated aqueous Na₂SO₃ solution and extracted with chloroform (20 mL \times 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative TLC on silica gel using hexane: ethyl acetate (8:1) as an eluent. (*E*)-4-Iodo-5-[(diphenoxy)-phosphoryloxy]-4-octene **4b** was obtained in 84% yield (204.1 mg).

(*E*)-1-Iodo-2-[(diphenoxy)phosphoryloxy]stilbene (4a): mp 128–129 °C; IR (KBr) 3060, 1650, 1300, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ = 6.69 (4H, d, *J* = 8.5 Hz), 7.06–7.40 (12H, m), 7.51 (2H, d, *J* = 8.2 Hz), 7.61–7.64 (2H, m); ¹³C NMR (125 MHz, CDCl₃) δ = 89.02 (q, *J*_{C-P} = 10 Hz), 119.77 (t, *J*_{C-P} = 5 Hz), 125.13 (t), 128.15 (t), 128.23 (t), 128.37 (t), 129.50 (t), 129.70 (t), 130.38 (t), 136.16 (q), 139.88 (q), 145.43 (q, *J*_{C-P} = 9 Hz), 150.14 (q, *J*_{C-P} = 9 Hz); MS (FAB) found: (M + H)⁺ = 555, calcd for C₂₆H₂₁IO₄P: M = 555. Anal. Found: C, 56.25; H, 3.74%. Calcd for C₂₆H₂₀IO₄P: C, 56.34; H, 3.64%.

(*E*)-4-Iodo-5-[(diphenoxy)phosphoryloxy]-4-octene (4b): oil; IR (neat) 2960, 1650, 1290, 730 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta = 0.77$ (3H, t, J = 7.3 Hz), 0.90 (3H, t, J = 7.3 Hz), 1.45 (2H, sextet, J = 7.4 Hz), 1.56 (2H, sextet, J = 7.3 Hz), 2.40 (2H, t, J = 7.1 Hz), 2.70 (2H, t, J = 7.5 Hz), 7.19–7.26 (6H, m), 7.34–7.37 (4H, m); ¹³C NMR (125 MHz, CDCl₃) $\delta = 12.79$ (p), 13.36 (p), 20.07 (s), 22.48 (s), 38.26 (s), 38.97 (s), 95.53 (q, $J_{C-P} = 10$ Hz), 120.11 (t, $J_{C-P} = 5$ Hz), 125.59 (t), 129.86 (t), 147.00 (q, $J_{C-P} = 10$ Hz), 150.50 (q, $J_{C-P} = 8$ Hz); HRMS (FAB) found: (M + H)⁺ = 487.0528, calcd for C₂₀H₂₅-IO₄P: M = 487.0535. Found: C, 49.52; H, 4.83%. Calcd for C₂₀H₂₄IO₄P: C, 49.40; H, 4.97%.

(*E*)-1-Phenyl-1-[(diphenoxy)phosphoryloxy]-2-iodo-1propene (4c): oil; IR (neat) 3060, 1300, 780 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 2.54$ (3H, d, J = 2.6 Hz), 6.99 (4H, d, J = 7.5 Hz), 7.13 (2H, t, J = 7.2 Hz), 7.22–7.35 (7H, m), 7.44– 7.48 (2H, m); ¹³C NMR (125 MHz, CDCl₃) $\delta = 27.00$ (p), 87.45 (q, $J_{C-P} = 10$ Hz), 199.93 (t, $J_{C-P} = 5$ Hz), 125.38 (t), 127.97 (t), 129.34 (t), 129.65 (t), 130.16 (t), 133.63 (q), 136.12 (q), 145.02 (q, $J_{C-P} = 9$ Hz), 150.29 (q, $J_{C-P} = 7$ Hz); HRMS (FAB) found: (M + H)⁺ = 493.0058, calcd for C₂₁H₁₉IO₄P: M = 493.0066.

(*E*)-1-Iodo-2-phenyl-2-[(diphenoxy)phosphoryloxy]-1ethene (4d): oil; IR (neat) 3070, 1300, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 6.61$ (1H, d, J = 2.6 Hz), 7.12–7.40 (13H, m), 7.58 (2H, dd, J = 8.2, 1.9 Hz); ¹³C NMR (125 MHz, CDCl₃) $\delta = 64.77$ (t, $J_{C-P} = 6$ Hz), 120.06 (t, $J_{C-P} = 6$ Hz), 125.65 (t), 128.13 (t), 128.72 (t), 129.30 (t), 129.86 (t), 129.92 (t), 133.55 (q, $J_{C-P} = 5$ Hz), 149.72 (q, $J_{C-P} = 9$ Hz), 150.35 (q, $J_{C-P} = 9$ Hz); HRMS (FAB) found: (M + H)⁺ = 478.9910. calcd for C₂₀H₁₇IO₄P: M + H = 478.9909.

(*E*)-1-Iodo-2-[(diphenoxy)phosphoryloxy]-1-hexene (4e): oil; IR (neat) 3080, 2960, 1300, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 0.87$ (3H, t, J = 7.3 Hz), 1.31 (2H, sextet, J = 7.6 Hz), 1.44 (2H, quint, J = 8.3 Hz), 2.51 (2H, t, J = 7.3 Hz), 6.19 (1H, d, J = 2.2 Hz), 7.20–7.26 (6H, m), 7.34–7.38 (4H, m); ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.80$ (p), 21.87 (s), 28.02 (s), 33.63 (s, $J_{C-P} = 5$ Hz), 63.90 (t, $J_{C-P} = 6$ Hz), 120.06 (t, $J_{C-P} = 5$ Hz), 125.69 (t), 129.88 (t), 150.35 (q, $J_{C-P} = 8$ Hz), 153.33 (q, $J_{C-P} = 10$ Hz); HRMS (FAB) found: $(M + H)^+ = 459.0213$, calcd for $C_{18}H_{21}IO_4P$: M + H = 459.0222.

(*E*)-1-Iodo-2-(diphenylphosphoryloxy)stilbene (5a): mp 117–118 °C; IR (KBr) 3060, 1230, 700 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 7.16–7.40 (18H, m, Ar), 7.53 (2H, d, *J* = 6.6 Hz, Ar); ¹³C NMR (125 MHz, CDCl₃) δ = 86.82 (q, *J*_{C-P} = 7 Hz), 127.66 (t), 127.93 (t), 128.04 (t), 128.23 (t), 129.19(t), 129.60 (t), 130.35 (q), 130.46 (t), 131.50 (t, *J*_{C-P} = 12 Hz), 131.88 (t, *J*_{C-P} = 2 Hz), 136.41 (q), 140.72 (q), 146.68 (q, *J*_{C-P} = 9 Hz), 150.14 (q, *J*_{C-P} = 9 Hz); MS (FAB) found: (M + H)⁺ = 523, calcd for C₂₆H₂₁IO₂P: M + H = 523. Anal. Found: C, 59.64; H, 3.92%. Calcd for C₂₆H₂₀IO₂P: C, 59.79; H, 3.86%.

(*E*)-4-Iodo-5-(diphenylphosphoryloxy)-4-octene (5b): oil; IR (neat) 3060, 2960, 1240, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) $\delta = 0.80$ (3H, t, J = 7.4 Hz), 0.81 (3H, t, J = 7.3 Hz), 1.41 (2H, sextet, J = 7.4 Hz), 1.51 (2H, sextet, J = 7.4 Hz), 2.40 (2H, t, J = 7.4 Hz), 2.53 (2H, t, J = 7.7 Hz), 7.45–7.50 (4H, m), 7.56 (2H, td, J = 7.0, 1.4 Hz), 7.83 (4H, ddd, $J_{H-P} = 12.4$ Hz, J = 8.0, 1.2 Hz); ¹³C NMR (100 MHz, CDCl₃) $\delta = 13.08$ (p), 13.51 (p), 20.36 (s), 22.68 (s), 39.18 (s), 39.65 (s), 94.29 (q, $J_{C-P} = 8$ Hz), 128.72 (t, $J_{C-P} = 13$ Hz), 131.59 (t, $J_{C-P} = 11$ Hz), 131.74 (q, $J_{C-P} = 13$ Hz), 132.54 (t, $J_{C-P} = 3$ Hz), 147.71 (q, $J_{C-P} = 10$ Hz); HRMS (FAB) found: (M + H)⁺ = 455.0638, calcd for C₂₀H₂₃IO₂P: M + H = 455.0637.

(*E*)-1-Phenyl-1-(diphenylphosphoryloxy)-2-iodo-1-propene (5c): mp 128–129 °C; IR (KBr) 3050, 1240, 870 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) $\delta = 2.71$ (3H, d, J = 2.1 Hz), 7.06–7.16 (5H, m), 7.30–7.33 (4H, m), 7.42–7.46 (2H, m), 7.60–7.65 (4H, m); ¹³C NMR (125 MHz, CDCl₃) $\delta = 27.78$ (p), 87.31 (q, $J_{C-P} = 6$ Hz), 127.55 (t), 128.24 (t, $J_{C-P} = 13$ Hz), 128.62 (q), 130.01 (t), 130.42 (t), 131.57 (t, $J_{C-P} = 10$ Hz), 132.10 (t, $J_{C-P} = 2$ Hz), 137.16 (q), 145.40 (q, $J_{C-P} = 10$ Hz), 150.29 (q, $J_{C-P} = 7$ Hz); MS (FAB) found: (M + H)⁺ = 461, calcd for C₂₁H₁₉IO₂P: M + H = 461. Anal. Found: C, 54.84; H, 4.02%. Calcd for C₂₁H₁₈IO₂P: C, 54.80; H, 3.94%.

(*E*)-1-Iodo-2-(diphenylphosphoryloxy)-1-hexene (5e): mp 34.5–35.5 °C; IR (KBr) 3080, 2920, 1220, 950 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 0.90 (3H, t, *J* = 7.3 Hz), 1.33 (2H, sextet, *J* = 7.5 Hz), 1.53 (2H, quint, *J* = 7.5 Hz), 2.47 (2H, t, *J* = 7.6 Hz), 6.05 (1H, d, *J* = 2.1 Hz), 7.45–7.57 (6H, m), 7.79–7.83 (4H, m); ¹³C NMR (125 MHz, CDCl₃) δ = 13.83 (p), 21.89 (s), 28.31 (s), 34.49 (s, *J*_{C-P} = 3 Hz), 62.62 (t, *J*_{C-P} = 6 Hz), 128.60 (t, *J*_{C-P} = 14 Hz), 130.81 (q, *J*_{C-P} = 139 Hz), 131.58 (t, *J*_{C-P} = 10 Hz), 132.53 (t, *J*_{C-P} = 3 Hz), 153.56 (q, *J*_{C-P} = 10 Hz); HRMS (FAB) found: (M + H)⁺ = 427.0297, calcd for C₁₈H₂₁IO₂P: M + H = 427.0324.

(2-Iodocyclohexyl) diphenylphosphinate (7): mp 107– 108 °C; IR (KBr) 3060, 2950, 1240, 750 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ = 1.34–1.41 (2H, m), 1.55–1.65 (2H, m), 1.77– 1.80 (1H, m), 1.93–1.99 (1H, m), 2.31–2.40 (2H, m,), 4.30 (1H, ddd, J = 8.6, 8.6, 3.8 Hz), 4.43–4.49 (1H, m), 7.44–7.47 (4H, m), 7.51–7.55 (2H, m), 7.87–7.91 (4H, m); ¹³C NMR (125 MHz) δ = 22.71 (s), 25.71 (s), 32.44 (s), 33.09 (t, $J_{C-P} = 6$ Hz), 36.21 (s), 78.65 (t), 128.37 (t, $J_{C-P} = 14$ Hz), 128.43 (t, $J_{C-P} = 14$ Hz), 131.69 (t, $J_{C-P} = 10$ Hz), 131.97 (t, $J_{C-P} = 11$ Hz), 132.10 (t), 132.15 (q, $J_{C-P} = 139$ Hz); MS (FAB) found: (M + H)⁺ = 427, calcd for C₁₈H₂₁IO₂P: M + H = 427. Anal. Found: C, 50.70; H, 4.95%. Calcd for C₁₈H₂₀IO₂P: C, 50.72; H, 4.73%.

Iodohydroxylation Reaction of Glucal with a Trivalent Iodine Compound/Iodine System. A solution of iodane **2** (876.0 mg, 2.0 mmol) and iodine (508.0 mg, 2.0 mmol) in ClCH₂CH₂Cl (2.5 mL) was stirred for 1 h, and then glucal **8A** (136.0 mg, 0.5 mmol) was added to the solution. The solution was stirred for 5 d under dark conditions at rt. Then the reaction mixture was poured into saturated aqueous Na₂SO₃ solution and extracted with chloroform (20 mL × 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative TLC on silica gel using hexane:ethyl acetate (1:1) as an eluent. Iodohydrin compound **10A** was obtained in 72% yield (149.8 mg).

Iodophosphoryloxylation Reaction of Glucal with a Trivalent Iodine Compound/Phosphonium Iodide System. A solution of iodane **2** (876.0 mg, 2.0 mmol), methyltriphenylphosphonium iodide (808.0 mg, 2.0 mmol), and diphenylphosphinic acid (436.0 mg, 2.0 mmol) in CHCl₃ (10 mL) was stirred for 1 h, and then glucal **8A** (136.0 mg, 0.5 mmol) was added to the solution. The solution was stirred for 6 d under dark conditions at rt. The reaction mixture was poured into saturated aqueous Na₂SO₃ solution and extracted with chloroform (20 mL \times 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative TLC on silica gel using hexane:ethyl acetate (1:2) as an eluent. (3,4,6-Tri-*O*-acetyl-2-deoxy-2-iodo- α -D-mannopyranosyl) diphenylphosphinate (**9A**- α) and (3,4,6-tri-*O*-acetyl-2-deoxy-2-iodo- β -D-glucopyranosyl) diphenylphosphinate (**9A**- β) were obtained in 24% (73.9 mg) and 5% (15.4 mg), respectively, together with iodohydrin compound **10A** (20.8 mg, 10%).

Iodophosphoryloxylation Reaction of Glucal with a Diphenylphosphinic Acid/Iodine System. Diphenylphosphinic acid (436.0 mg, 2.0 mmol), iodine (254.0 mg, 1.0 mmol), and potassium carbonate (276.0 mg, 2.0 mmol) were added to a solution of glucal **8A** (68.0 mg, 0.25 mmol) in CICH₂CH₂CI (5.0 mL), and the solution was stirred for 1 d at rt. The reaction mixture was poured into saturated aqueous Na₂SO₃ solution and extracted with chloroform (20 mL × 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by preparative TLC on silica gel using hexane:ethyl acetate (1:2) as an eluent. (3,4,6-Tri-*O*-acetyl-2-deoxy-2-iodo-α-D-mannopyranosyl) diphenylphosphinate (**9A**-α) and (3,4,6-tri-*O*-acetyl-2-deoxy-2iodo-β-D-glucopyranosyl) diphenylphosphinate (**9A**-β) were obtained in 71% (109.3 mg) and 22% (33.9 mg), respectively.

(3,4,6-Tri-*O***-acetyl-2-deoxy-2-iodo**-α-**D-mannopyranosyl) diphenylphosphinate (9A**-α)**:** foam; IR (KBr) 3060, 2920, 1750, 1370, 1230, 730 cm⁻¹; ¹H NMR (500 MHz) $\delta = 2.05$ (3H, s), 2.07 (3H, s), 2.11 (3H, s), 3.82 (1H, dd, J = 13.6, 3.5 Hz), 4.10–4.14 (2H, m), 4.69 (1H, dd, J = 4.3, 1.4 Hz), 4.77 (1H, dd, J = 9.8, 4.3 Hz), 5.47 (1H, t, J = 9.8 Hz), 6.12 (1H, dd, $T_{3,3}$, 1.4 Hz), 7.47–7.61 (6H, m), 7.78–7.84 (4H, m); ¹³C NMR (125 MHz) $\delta = 20.55$ (p), 20.64 (p), 20.84 (p), 28.90 (t, $J_{C-P} = 5$ Hz), 61.40 (s), 66.99 (t), 68.28 (t), 70.93 (t), 96.66 (t, $J_{C-P} = 4$ Hz), 128.67 (t, $J_{C-P} = 13$ Hz), 128.83 (t, $J_{C-P} = 15$ Hz), 130.06 (q, $J_{C-P} = 13$ Hz), 130.49 (q, $J_{C-P} = 135$ Hz), 131.35 (t, $J_{C-P} = 10$ Hz), 131.68 (t, $J_{C-P} = 10$ Hz), 132.80 (t, $J_{C-P} = 7$ Hz), 169.24 (q), 169.83 (q), 170.54 (q); HRMS (FAB) found: (M + H)⁺ = 617.0396, calcd for C₂₄H₂₇IO₉P: M + H = 617.0437.

(3,4,6-Tri-*O*-acetyl-2-deoxy-2-iodo-β-D-glucopyranosyl) diphenylphosphinate (9A-β): mp 126–127 °C (dec); IR (KBr) 3060, 2950, 1750, 1730, 1240, 750 cm⁻¹; ¹H NMR (500 MHz) $\delta = 1.97$ (3H, s), 2.00 (3H, s), 2.08 (3H, s), 3.75 (1H, ddd, J = 10.1, 5.2, 2.3 Hz), 3.92 (1H, dd, J = 12.2, 2.3 Hz), 4.07–4.13 (2H, m), 4.96 (1H, dd, J = 10.1, 9.2 Hz), 5.29 (1H, dd, J = 11.1, 9.1 Hz), 5.63 (1H, dd, 9.2, 8.3 Hz), 7.43–7.58 (6H, m), 7.82–7.86 (4H, m); ¹³C NMR (125 MHz) $\delta = 20.52$ (p), 20.57 (p), 20.67 (p), 27.56 (t, $J_{C-P} = 8$ Hz), 61.58 (s), 68.66 (t), 72.53 (t), 75.15 (t), 96.97 (t, $J_{C-P} = 6$ Hz), 128.21 (t, $J_{C-P} = 14$ Hz), 128.44 (t, $J_{C-P} = 16$ Hz), 130.47 (q, $J_{C-P} = 139$ Hz), 131.08 (q, $J_{C-P} = 136$ Hz), 131.70 (t, $J_{C-P} = 12$ Hz), 131.98 (t, $J_{C-P} = 12$ Hz), 132.42 (t), 132.61 (t), 169.43 (q), 169.49 (q), 170.34 (q); MS (FAB) found: (M + H)⁺ = 617, calcd for C₂₄H₂₇-IO₉P: M + H = 617.

3,4,6-Tri-*O***-acetyl-2-deoxy-2-iodohydrin (10A):** oil; IR (neat) 2960, 1740, 1370, 600 cm ⁻¹; ¹H NMR (500 MHz) δ = 2.07 (3H, s), 2.10 (3H, s), 2.13 (3H, s), 4.19–4.20 (2H, m), 4.26–4.30 (1H, m), 4.58 (1H, dd, J = 4.4, 1.2 Hz), 4.73 (1H, dd, J = 9.3, 4.4 Hz), 5.39 (1H, t, J = 9.6 Hz), 5.60 (1H, bs); ¹³C NMR (125 MHz) δ = 20.64 (p), 20.78 (p), 20.92 (p), 30.26 (t), 62.26 (s), 67.65 (t), 68.75 (t), 69.14 (t), 95.82 (t), 169.61 (q), 170.0 (q), 170.01 (q); HRMS (FAB) found: (M + H)⁺ = 417.0024, calcd for C₁₂H₁₈IO₈: M + H = 417.0046.

(3,4,6-Tri-*O*-acetyl-2-deoxy-2-iodo-α-D-talopyranosyl) diphenylphosphinate (9B-α): foam; IR (KBr) 3060, 3000, 1760, 1740, 1370, 1210, 730 cm⁻¹; ¹H NMR (500 MHz) δ = 2.01 (3H, s), 2.08 (3H, s), 2.16 (3H, s), 3.83 (1H, dd, J = 11.2, 6.3 Hz), 4.08 (1H, dd, J = 11.2, 7.3 Hz), 4.44–4.47 (2H, m), 5.00 (1H, t, J = 3.7 Hz), 5.44 (1H, bs), 6.24 (1H, d, J = 7.0 Hz), 7.47–7.61 (6H, m), 7.75–7.85 (4H, m); ¹³C NMR (125 MHz) $\delta = 20.37$ (t, $J_{C-P} = 6$ Hz), 20.56 (p), 20.75 (p), 20.85 (p), 61.00 (s), 64.28 (t), 64.58 (t), 68.24 (t), 98.32 (t, $J_{C-P} = 5$ Hz), 128.66 (t, $J_{C-P} = 13$ Hz), 128.76 (t, $J_{C-P} = 13$ Hz), 130.19 (q, $J_{C-P} = 139$ Hz), 130.29 (q, $J_{C-P} = 134$ Hz), 131.23 (t, $J_{C-P} = 11$ Hz), 131.68 (t, $J_{C-P} = 11$ Hz), 132.73 (t, $J_{C-P} = 4$ Hz), 132.76 (t, $J_{C-P} = 3$ Hz), 169.49 (q), 169.88 (q), 170.15 (q); HRMS (FAB) found: (M + H)⁺ = 617.0386, calcd for C₂₄H₂₇-IO₉P: M + H = 617.0437.

(3,4,6-Tri-*O*-acetyl-2-deoxy-2-iodo-β-D-galactopyranosyl) diphenylphosphinate (9B-β): oil; IR (neat) 3060, 2920, 1730, 1360, 750 cm⁻¹; ¹H NMR (500 MHz) δ = 1.94 (3H, s), 2.06 (3H, s), 2.14 (3H, s), 3.47-4.01 (3H, m), 4.24 (1H, dd, J= 11.8, 9.3 Hz), 5.09 (1H, dd, J = 11.6, 3.4 Hz), 5.20 (1H, d, J = 3.1 Hz), 5.63 (1H, dd, J = 9.3, 8.7 Hz), 7.44-7.58 (6H, m), 7.83-7.88 (4H, m); MS (FAB) found: (M + H)⁺ = 617.

(3,4-Di-*O***-acetyl-2,6-dideoxy-2-iodo**-α-**L**-**glucopyranosyl) diphenylphosphinate (9C**-α): mp 105–106 °C (dec); IR (KBr) 3060, 2980, 1750, 1380, 1240 and 730 cm⁻¹; ¹H NMR (500 MHz) δ = 1.05 (3H, d, *J* = 6.1 Hz), 2.00 (3H, s), 2.08 (3H, s), 3.59 (1H, dd, *J* = 9.7, 6.1 Hz), 4.06 (1H, dd, *J* = 11.0, 9.1 Hz), 4.71 (1H, t, *J* = 9.5 Hz), 5.24 (1H, dd, *J* = 11.1, 9.0 Hz), 5.57 (1H, dd, *J* = 8.9, 8.0 Hz), 7.43–7.57 (6H, m), 7.82–7.87 (4H, m); ¹³C NMR (125 MHz) δ = 16.91 (p), 20.61 (p), 20.73 (p), 28.33 (t, *J*_{C-P} = 8 Hz), 70.80 (t), 73.68 (t), 75.20 (t), 96.96 (t, *J*_{C-P} = 6 Hz), 128.18 (t, *J*_{C-P} = 15 Hz), 128.41 (t, *J*_{C-P} = 14 Hz), 130.55 (q, *J*_{C-P} = 140 Hz), 131.42 (q, *J*_{C-P} = 122 Hz), 131.77 (t, *J*_{C-P} = 11 Hz), 131.96 (t, *J*_{C-P} = 1 Hz), 132.35 (t, *J*_{C-P} = 3 Hz), 132.54 (t, *J*_{C-P} = 3 Hz), 169.51 (q), 169.74 (q); MS (FAB) Found: (M + H)⁺ = 559. Anal. Found: C, 47.43; H, 4.24%. Calcd for C₂₂H₂₄IO₇P: C, 47.33; H, 4.33%.

(3,4-Di-O-acetyl-2,6-dideoxy-2-iodo-β-L-mannopyranosyl) diphenylphosphinate (9C-β): foam; IR (KBr) 3060, 2990, 1750, 1370, 1240, 730 cm⁻¹; ¹H NMR (500 MHz) δ = 1.01 (3H, d, J = 6.1 Hz), 2.05 (3H, s), 2.10 (3H, s), 4.01 (1H, dd, J = 9.9, 6.1 Hz), 4.68–4.71 (2H, m), 5.18 (1H, t, J = 9.5 Hz), 6.08 (1H, d, J = 7.4 Hz), 7.47–7.60 (6H, m), 7.79–7.84 (4H, m); ¹³C NMR (125 MHz) δ = 17.06 (p), 20.65 (p), 20.88 (p), 29.65 (t, J_{C-P} = 6 Hz), 68.40 (t), 68.98 (t), 72.04 (t), 96.70 (t, J_{C-P} = 6 Hz), 128.55 (t, J_{C-P} = 13 Hz), 128.75 (t, J_{C-P} = 14 Hz), 130.29 (q, J_{C-P} = 139 Hz), 130.75 (q, J_{C-P} = 136 Hz), 131.33 (t, J_{C-P} = 11 Hz), 131.64 (t, J_{C-P} = 10 Hz), 132.56 (t, J_{C-P} = 2 Hz), 132.69 (t, J_{C-P} = 4 Hz), 169.51 (q), 169.87 (q); HRMS (FAB) found: (M + H)⁺ = 559.0323, calcd for C₂₂H₂₅-IO₇P: M + H = 559.0383.

Reduction of Iodide with Triethylborane System. To a solution of (3,4,6-tri-O-acetyl-2-deoxy-2-iodo- α -D-mannopyranosyl) diphenylphosphinate (**9A**- α) (209.4 mg, 0.34 mmol) in 1,4-cyclohexadiene (2.4 mL) was added triethylborane (1 M, THP, 4.0 mL), the mixture was stirred for 2 h at 0 °C under aerobic conditions, and then triethylborane (1 M, THP, 4.0 mL) was added again and stirred for 2 h. After removal of the solvent under reduced pressure, the residue was purified by preparative TLC on silica gel using hexane:ethyl acetate (1:2) as an eluent. (3,4,6-Tri-O-acetyl-2-deoxy- α -D-mannopyranosyl) diphenylphosphinate (**11A**- α) was obtained in **88**% yield (146.6 mg).

(3,4,6-Tri-*O***-acetyl-2-deoxy**-α-**D-mannopyranosyl) diphenylphosphinate** (**11A**-α); foam; IR (neat) 3060, 2960, 1750, 1240, 1050 cm ⁻¹; ¹H NMR (500 MHz) δ = 1.94–2.04 (10H, m), 2.44 (1H, ddd, J = 13.5, 5.2, 1.3 Hz), 3.65 (1H, dd, J = 12.5, 2.2 Hz), 4.05 (1H, ddd, J = 9.9, 3.7, 2.2 Hz), 4.19 (1H, dd, J = 12.6, 3.7 Hz), 5.06 (1H, t, J = 9.9 Hz), 5.45 (1H, ddd, J = 11.6, 9.8, 5.2 Hz), 6.02 (1H, dd, 7.3, 2.4 Hz), 7.45–7.59 (6H, m), 7.78–7.84 (4H, m); ¹³C NMR (125 MHz) δ = 20.57 (p), 20.61 (p), 20.84 (p), 35.81 (s, J_{C-P} = 6 Hz), 61.38 (s), 68.24 (t), 68.57 (t), 69.74 (t), 93.50 (t, J_{C-P} = 5 Hz, 1-C), 128.51 (t, J_{C-P} = 13 Hz), 128.66 (t, J_{C-P} = 14 Hz), 130.64 (q, J_{C-P} = 13 Hz), 131.26 (q, J_{C-P} = 13 Hz), 131.37 (t, J_{C-P} = 10 Hz), 131.61 (t, J_{C-P} = 10 Hz), 132.51 (t, J_{C-P} = 3 Hz), 132.54 (t, J_{C-P} = 3 Hz), 169.60 (q), 170.16 (q), 170.53 (q); HRMS (FAB) found: (M + H)⁺ = 491.1450, calcd for C₂₄H₂₈O₂P: M + H = 491.1471.

Acknowledgment. T.M. thanks The Japan Science Society for financial support from a Sasakawa Scientific Research Grant. H.T. is grateful for financial support from a Grant-in-Aid for Scientific Research (No. 08554031) from the Ministry of Education, Science and Culture of Japan. We thank Ms. Ritsuko Hara for the measurements of FAB-MS and HRMS, and Dr. Hiroko Seki for the measurements of elemental analysis, in Chemical Analysis Center of Chiba University. **Supporting Information Available:** Copies of ¹H NMR spectra for all compounds described in the article. This material is available free of charge via the Internet at http://pubs.acs.org.

JO000296R